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Multiscalle Autoregressive Processes, Part 11: Lattice
Structures for Whitening and Modeling

Nlich~le Basseville. Albert Benveniste. FCllowv. lAE.Ek and Alan S_ Wlllskv. liii1111

Absxtract-in part I of this ts~o-part paper ise introduced a isotropic processes and began the studý ot their paramfe-
class of stochastic processes defined on dioadic homogenous tri/ation. TIhe major result of Il Is INas I() estahl ilh t hat thle
trees. The motivation for the study of these processes conis only suitable param.ietritation of isotropic protem~ss on the
from our desire to dev elop a theory for mult iresolution descrip-
tions of stochastic processes in one and multiple dimensions dydcte sotie i elcincclcetl-t~
based on the idea underlying the recently introduced theory of ing the generalization of the Schur Lev inson paamt
wsavelet transforms. In part I iwe described hoss this objectiiie zation techniques for usual time series, In this second pari.
leads to the study of processes on trees and began the devel- we further investigate thepoetestt cotoipo
opment of a theory of autoregressive (AR) models for isotropic pessi em fter ref petioncesill ientropIn parti-
processes on trees. In this second part we complete that inves- cse ntrso hi elcincelcet.I atc
tigation by developing lattice structures for the whitening and ular. in this paper we use the anls in IlIl both to con-
modeling of isotropic processes on trees. We also present a re- struct lattice structures, for the \hitenino and niodelin, oti
suit relating the stability properties of these models to the re- AR processes on dyadic trees ind to analyze fin delail thesec
flection coefficient sequence introduced in part 1. In addition. models and the properties of isotropic pr(,ce~sses
this framework allows us to obtain a detailed analysis of the Thsperels avlio!.,ttnk)1 id
Wold decomposition of processes on trees. One Thiststn, paeaeiss-v~ n'~ rtW r iidrxd
pect of this is that there is asignificantly larger class of singular of Il1l. and we refer the reader to that paper for rcterence
processes on dyadic trees than on the integers. In the next section we provide a brief sunmiar\ of somie

of' the basic notation and constructs from [I 1 Sect ion Ill
is then devoted ito thle presentation of- ýkhitenin- and mood-

I. ~tRi~tCtiN ling filters for AR isotropic processes. Unnorimaliied asIN part I IlIl of this two-part paper we introduced the well as normalized v ersions of these tillers are uiven. In
iclass of isotropic processes on homogeneous dyadic particular. the normialized modeling, filter appears as a tree

trees, and began the analysis of the corresponding elas:- .:ructured scattering systemn. Then, in Section IV. several
of autoregressive (AR) processes. As developed in IllI properties of isotropic processes are analxzed in terms of
the motivation for the study of these processes comes fromn the reflection coefficient sequence. SpeCifiCall\ . AR pro-
our desire to provide a statistical framework for multi- cesses are characterized as being the processes with only
scale signal processing based on the structure of the re- finitely mnany nonzero reflection coetiicients. purely non-
cently introduced class of wavelet transforms 171. deternmiistic processes are characteriied in a fair[,, still-

In IlI], we introduced and described the geometry of pie way, a stability result for the imodeling tilters ispre-
homog~eneous dyadic trees and a natural notion of "past- sented. and finally it is shown that ev.er hmife -set of
and "future.," where a move into the -past- ("'future"') reflection coefficients properly define a unique AR pro-
corresponds to moving to a coarser (liner) scale descrip- cess provided they belong to an easily defined domlain.
tion of a signal. The class of isotropic processes on trees Finally, future issues, both practical and theoretical, are
was also introduced in Ill1. and. with our notions of past discussed in the conclusion. Man\ of the results presented
and future, we defined the class of autoregressive (AR) here, while paralleling those for time series, are more

complex than their time series counterparts due to the sic-
Mannscript receiked March 2t0 1990i, re'. sed MIaN 30. 1091i The %kork nilicant increase in geometric complexity fin vome from a

of Mt. Ba..seutiie and A Bten% enisie s'a iupported in parti h\ G;rant (NRS homogeneous tree oif order I. i.e.. the ustLial discrete-timec
601i34 and h\s INRIiA-NSF aiireenicnfl. The work (it A, S, WAillsk% %a,

flpote in [)r \teArFoc ".c I Sinii eahudr(;rn index set, to the dyadic tree, wkhich is of order 2. For
AFOSR-92-J-(i10i2 and l's ihe Nationial Science Foundation uinder G~rant" example. as introduced in IlIl and described fin detail in

MIP901251.ndiNTi)i233. nd n iarth>ihet:. AnS Rseach Section IV. the prediction error processes associated wv ith
01)1ce tinder contract t)AAi.01j 40 K 0)171. arid 1,. tNRIA.

%I Basse\ ille 11 " Ill' iRt5A. C.11mpas d& BalieI~n .350)42 Renrie Cede\. lattice filters on dyadic trees are vector processes of di-
F-rance. rind "ith the Centre National de la Recherche Scienlilviret (CNRS., iension that increases wsith filter order.
F-rance

A, ri- enixte is 0 ili IRIS-S. Cminpui. de Beailiieii 350)42 Rellnie Cede\, I.D.\Ti RI N . ISO )I HiICi PRi ( I SS[5 , \NiD
t-rance. and Aith the Institut National dc Heichrche en iniorinalikinie ei en PtwlI R)1 ii ~(~
Aritoniai ique OiNH iA . France Ptm-iEK) ijRi~

A S \Sili~k% is v ilh the tLahoralorý for nloriiimaiion. aindt Decisiion S\, In this section we review;, sonie of' thle basic cirwcp,.
teiti. and the Decpartmient of E-lecric-al l-ninneering and ( oripitacr Sc ience,
MIassachusetts Iinstiii nil fccinoiopý. (:atiIhridgicc MtA 0)21 39) and constructs described in Ill1. We refecr the reader to I I

ftiL i iw, Nuirihcr 92)107S for details.
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A homogeneous dyadic tree 3, as illustrated in Fig. I I
has a natural notion of distance dIs. r) between anN two
nodes, s. t E 3. By choosing a particular boundary point.
denoted by -o. we can redraw 3 as in Fig. 2. Here all
of the points that are at the fame 'distance trom-
appear on the same level or horocvcle. For m ultiscale pro-
cessing we can think of each horocycle as corresponding
to describing signals at a particular scale, with finer scales
being farther from - c. Also, as illustrated in the figture
the choice of -o leads naturally to a backward (tine-to-
coarse) shift. -y - and two forward (coarse-to-fine) shifts
a and ý3 . Also it is useful to introduce the operator 6. As
indicated in Fig. 2. the transformation b which inter-
changes nodes i and t6 for all t e 3. can he thought of'
locally as an interchange pivoted at the immediate ances- 2 suCccessie horow.'cles:

tor t -. Higher order operators 6"" correspond to inter- 0

changes pivoted at more distant ancestors of t (i.e.. t. " . .,

n > 1). The nodes t6'2' and t6b' are indicated in the fig-
ure.

As developed in I I]. all nodes in 3 can be coded in
terms of shifts from a specified, arbitrary node rt. Specif-
ically, let

9 = (-Y1)* U (I 6 1a. 01* U {a. 01*. (21

Then 3 = {twlw i £}. The order Iwv of any move ws c
£ is defined as

iwl d(. tw). (2.2)

A move w is causal, denoted by w < 0. if wt is on the Q

same or a coarser horocycle than that on which t is lo-
cated.

A zero-mean stochastic process Y,. t E 3. indexed by
nodes on the tree is isotropic if the correlation between Y
at any two nodes depends only on the distance between
those rodes, i.e., ry-

El YY,I = (2.3)

Equivalently. Y, is isotropic if Z, = Yt,,, has the same sta-
tistics as Y, for any isometry f: 3 -- 3. i.e.. any one to
one and onto map of 3 onto itself that preserves distances.
An AR model of orderp has the form Fig 2 Redra%%ing the d adtic Irec '•uth a piI.lcuiat .hoi-, ," hmunda

Y, Y , ,,, + aW, (2.4)
_, I' and the lattice filters to be described here involve predic-

tion error vectors of dimensions increasing kxith the order
where W, is unit variance white noise. Our interest here of prediction. Specifically. define the mth order past of' Y
is in developing AR models for isotropic processes, and at node i
as discussed in I 1, the constraints of isotropy imply rather jC 0. .5)
complex constraints on the a,, coefficients in (2.4). Note
also that the number of these coefficients essentially dou- where KC{ denotes the linear span off a set of ran-
bles as the order increases by I . dorn variables. Then the nth order backward prediction

In I I I we began the process of developing an alternate errors at node t are given by
description of isotropic AR processes in terms of gener-
alizations of the Levinson and Schur recursions for sta- , iw Iw . w
tionary time series. Because of the structure of the dyadic where
trees, in particular the fact that the number of nodes at a ,
given distance from a specified node increases geometri- ", j(w) . , - Y, .2.

cally with distance, the development of these recursion,, We also ict I, ,, denote the full 2 1" :Idimennasinal %ector
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of F,.,,(w). where I[x = largest integer ! x and where the the following: for n even
ordering of the w in (2,6) used in constructing F,.,, is de- ' ".21
scribed in I11. Similarly, we have the nth order forward , ,, -

prediction errors at node 1 , -1 k,,

.. {E1,,,w): 1w1 < n and w c O} (2.8) 2 A

where For n odd

E",,w) Y,,- ,). (2.9) (1" . (I ,

The ordering if the w in (2.8) to construct the 2 1"'i 21 where (2.23) holds for n = I as "ell. , ith a; - t.. B,

dimensional vector E,.,, is described in I I using these equations it is possible to deri•e a rctiursi c

In I I I we began the analysis of the recursive computa- procedure for computing the k,. that is the counterpart ot

tion of these prediction errors as the order n increases, the recursions in the standard Levinson algorithm tor tnc

What we found was that as in the usual Levinson recur- series. We also have Schur recursion, \xhich proside an

sions for time series the forward and backward prediction alternative mechanism for computing the reflection cool

errors of one order could be expressed recursively in terms ficient sequence. Specifically. deline the formal power c-

of projections onto prediction error vectors of the preced- ries

ing order. Most importantly, the constraint of isotropy al- P,, Vco (Y.. :,,)- E . ) ( i2.24,
'owed us to show that the required projections onto mul- 0

tidimensional spaces such as 9,.,, and 8,, reduced in fact Q,, = coy ( Y,, ; E(f;., 2_225
to projections onto specific scalar random variables.
namely, the barycenters of the prediction error vectors: and recall the following operaan rclthfolwnopators, ,on fOrmal pmkcr seric,.

e, 2-Un'- 2J L E,.,(w) (2.10) we introduced in 1Il: given
< 0 

S

., 2 - Z Fr.,, (2.(tl) S).,,
ii, - n.il <.

we set
Indeed. these projections can be expressed recursively in

terms of a single scalar sequence of reflection coefficients "y[SI = , .

k,,. Furthermore. as shown in (11, there exist a set of sca- i.

lar Levinson recursions for the barycenter error pro- = s,,,-. w.
cesses. In particular. for n even

e,, = e,.,, - I knfi n -• (2.12) Then for n even

I (f-, ,.,-1 +, = P:.,, - i Qer,, (2.13) P,,= ,,_ - k,,'[Q, I (2.26)

where = I•( Q,- I + 6' 'IP,, I) -- .P, 12 -.27 .

k,, cor (e,,, . , ) (2.14) where

and cor (x, Y) = E(xy) /[E(x)E( Y)J' . For n odd, n > k" =IQi1 j(0) + 6 P f0) (2.2-)
i: 2P,, .(0)

e,. = (e,, + C1e,b .. ,,, .) - k~A , _ (2.15) while for n odd

fn f,, ,., - k,, (e,. , + eli,,° 1, -,. ) (2,16) = (P,- + r [P , - k,,• 1(. I 2.2t)

with Qn =Y I - k (P,, + 6 1P, ) (2.30)

k, = cor(1 (e,., + i,,,, .. ,).I• ,,.I). (2.17) kn 2y[Q,, 1(0) Q.31Pn P, t(O) + 6 w" H 'I, 1(0) -. I

Also, for n = I - = f, ,.] = F,.1 , and

where
F,. Y-E, , -k,g Y2,

P,, Q, (2.32)
E, Y- k, Y,, (2.19)

where We also note here that. as for time series, there arc con-
straints on the reflection coefficients, which, thanks to the

EY,. Y,~ 'I cidtia
(El 2.20) &d, ., IuIId ,14 ".,ii".)y . aic slightiy more com -

El Yl , I r, plex for isotropic processes on dyadic trees:

In addition, the variances of the prediction errors satisfy for n even. k,- : 5_ , 1 (2.331
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for n odd. kI < 1_ ( I 2.34) For n eveln:

As we develop in this paper, these results lead To lattice F I ,k : , . -. 13 60
structures for AR processes on dyadic trees in which only
one new reflection coetlicient is introduced as the order , I

increases bN one. Furthermore, the constraints (2.33-. F k
(2.34) on these coefficients are quite simple and are de-
coupled from one another. Thus the lattice filter parame- FOr n od, it > I
trization of AR procL.i.,; ;'. far superior to the direct AR
model (2.4),.! E.

Il1. VECTOR LEiVINSON RECURSIONS AND) MOI)tI.IN(

ASND wHrr n; Fw rs F,, F 13 q I
In I I I we showed that the recursive computation of the E:• ..

components of the prediction error vectors [,_ and F,,,,
involved projections onto the barycenter error processes. whih for n I- FI. and E, arc st alar.' sau.sivmn (2. MS.

In addition, we developed scalar Levinson recursions for (2.19). Here the rtflection co/lic icrnt 'qctucnc , k, al-

the barycenters. In this section we combine these results '"lated/romn the correlation leti tion. r_ , P/ Y. at t rdi.'Cc

in order to develop whitening and modeling filters for Y, to either the Levinson or Schur rvcur.iion dcs rfi(d in

As we will see. in order to produce trie whitening filters. Section I!.

it will be necessary to perform a further normalization o" ProQf- Equations (2. 1 X.. (2.19) for n - I arc ce-

the innovations. However. the formulas for E,.,, and F,, actly I I. eqs. (3.17). (3.19)1. As indicated pre\ ioutk. the

are simpler. and consequently we begin with them. remainder of this resul is also a direct consequence of the
analysis in II. sec. 3 and 41. For example, Ifrom 3 16j.

A. filters Involving the Unnormalized Residuals [I. lemma 4.1. eq. (4.6)1. and 3.5ý of this paUpr. Xc
have the f~ollowingz chain feultsfocon

To begin, let us introduce a variation on notation used ha equalities foi if c\ en:

to describe the structure of the covariance matrix of the E,, = E,, Et F F.... F-.
prediction error E,, A hich we denoted in I[] by E.,. In
particular. we let 1, denote a unit vector all of whose = ,. - Xlf. I
components are the same: = E.,.. - XU'F_ ,. 131)

dim I where X is a constant to be determined. If we prc1IIultipls
this equality by (dim E.,,, I . \we obtain the fOrmula

We also define the matrix for the barycenter of E,,, . and from (2.121 ,Ne ,ec that

U.= 1. I r (3.2) X = k,. The other formulas are obtained in an analogousfashion.

which has a single nonzero eigenvalue of I. Equations The form of these whitening filters deserves some com-

(3.1). (3.2) define a family of vectors and matrices of dif- ment. Note first that the stages of the filter are of grok in,

ferent dimensions. The dimension used in any of the dimension. reflecting the growing dimension of the Er

expressions to follow is that required for the expression and F. , as i increases. Nevertheless. each stage is char-

to make sense. We also note the following identities: acterized by a single reflection coefficient. Thus. .khile
the dimension of the innovations vector of order a is on

U.U = U. 03) the order of 2'" , only a coeflicients are needed to specitf
the whitening tilter Ior its generation. This. of course, is

I .F _ L F(w) (3.4) a direct consequence of the constraint of isotrop. and the
'Jdim F ' richness of the group of isometrics of tile tree.

In IlI we obtained recursions (2.21l) -2.23, f' or thel~f* ,ýF 3ý5) variances of' tile bary.ccnitcrs of' the prediction vectors,.

Theorem 3.1 above provides us ,with the recursions forwhere F = F(w)} is a sector indexed by words w ordered.

as described in 1l1, where. fis its barycenter. and where the covarianccs and correlations tor the entire prediction
error vectors. We summari/e these and other facts about

f is a normazed ,rsion of its barycenter covariances in the following.
The results of 1 1. Sec. IV] lead directly to the following , I , -,.,. ,, i" -, !he ov aIrna , - I,, ,

rcctirsion,, for the fCcdi rror vectors: and F,,,. respectively. Then
Theorem 3. 1: The prediction error vectors ,,, and F, I ) For a even:

salisfv the following recurvions, Vfhere the k,, are the re-
flection coefficientsfuor the proces-s Y,: a) 'The eigcnvaltie of '; ,, associated with the cicen
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vector I., I I is which in turn follows from I I . Iclmma 4. 1 anld (4 27fl
Finall\ (30..18) follovs fron i3 15) and (3.X8. and 3 190

"3.11) is inilmediate from (2. 18) i2.20)
where a• is the variance of e,,,. Just as with timec series, the %khmtcniml filier ',pevinha

b) The cigenvalue of " ,, associated with the eien- tion leads directl\ to a mnodelin, filter im- Y.
"•ector I,- . II is A7corctn 3.2: 1h4 ,ude/ii° file tr ). Ne -,,l 1 b/ dhi

ti."= 2 ,, (•3.12)

where a?,, is the variance of4t.n.
2 ) F o r n o d d : 2 3 l : 5 '/, •

-., = .n = i ,, (3.13)

and the "igenvalue associated with the eigen\ ector II where,

his F4
=2 ,- (3.14)

where a is the variance of both e,.,, and f.,, Sk,. 1 = 3. 324t

3) For n even: " U, (A' L 'U.

- 0., = coy = (3.15)

E,..,) XU X (. ) For n odd. i > 1:

where U 1T and ,

1 ,4 " - C a. U (3.16) St 4'. 3 5 )

X,= (k,, - A;)o;. . (3.17) /
4) Fornt odd. n > I :

1 2 .,. ,. U , ,where
V = - k2,07.,, 1U. (3.18)

"" X,_ U - •I" I u,. -kI•
5 ) F o r ni = I : S ik ,, ) =3 .. . . 3 2 6 )

5,l = (I - k2)r,,. (3.19) -l{ U- U 3.26

Proof" Equations (3.11). (3.12). and (3.14) follow while.lOrn 1:
directly from the definition of the barycenter. For exam-
pie , for ni even 2) = sk, ( j t .

2 " e , e ,, = I r E j. ., ( 3 -2 0 ) F , . -k t I -- k Y . . ,} .

from which (3.11) follows immediately. Equations (3.13) 03.27)

is a consequence of 1I. lemma 4.11. To verify (3.15) let These equations can be verified bN solving (3.01 1.9) andus first evaluate (3.6) at both t and tW"' 2': hs qain a evrte ysl n 3h +30 n
(2.18)-H2.20) to obtain expressions for F's of order

) E,, ) ( , ,, - I and Fs of order n in term,, of s of order n and
E,. - k,, ( ; .,, l- . F's of order it - I. Note should also be made of the di-

EIm . E,6 I), U. mensions of the various signals and matrices in Theorem

(3.2 1) 3.2. In particular. for in even the twko components on the
lefi-hand side of (3.23) are of dimensions 2 and

The first equality in (3.15) is then a direct consequence 2" 2" respectively, while all three of the xectors on the

of' 11. lemma 4. 11 (compare (3.7) and (3.21 )). The form right-hand side of (3.23) arc of dimension 2 " and
given in the rightmost expression in (3.15) is also im- each of the square blocks in 13.24) is 2- :I -dimen-
mediate: the equality of the diagonal blocks is due to sional. For n odd. n > 1. hoth components of the right-
isotropy, while the form of the off-diagonal blocks again hand side of (3.25 r 2 '" .dimensional as is theF
follows from 11. lemma 4. 1I. The specific expression for block on the left-hand side. The two Eblocks on the left-
E a.,, in (3.16) follows directly from the second equality hand side, however. are 2 . "-dimensional, and the
in (3. 10). while (3. 7) follows from (3.21) and the fact
that 111 lIC . vAC 0i10tild ptopcrl% \rih' .S,1, . nl m,roe tlhe dImcn,,, ,'I O lb,*

bioek', depend', on If. illt'%C lhtClV!,,\ %k•" lt l~,- ki t1 o 10 ll[C- ý14, ) 1ý' 111111'!Ih
EIE ... i~ w E,,ý, -,., , 1 t ] - -: /,,I (7' (3.22) the notation. th,, %kill be 1,hTlc c, t ,h t il thc ,cqu~el



four squarc blocks in 3.20, are 2 '-dimnensional. "c at[ I'. ort more ICeINcra jll an f ,( loc.k at 1i)a sChll
have Included dottd tilne', In 3.-23) 13,20) to einphasile as. at 1.
iio\ the..e inap[ in-s operate. Note also that die first ,cc - IFor it e~en - diei bloc.k' [the lcd ti'' pelciomi thie a11-
tion 0.27) of' the iModeling titter Inv olves onlý Ncala r cki11tions as SpeCitied~ t" I 23 '8) I'O Csample. OKe Input'
quantities, to thle (top .... box, In t(le !)Lllr are /. . 1: , arid

As is the case\ for ltime scries, the lattice niodeinC11 tilter fi., . MliI bile theoutput 11c tA an1d l- Aci ' i is 1,til
ot' Theorem 3.2 hat, at scatterinuc layer structure . A;. mim- portant to esintanie Ohe anll1oLtIns i ' Lilipl~ai ni X j reklatd
portunt difference here is that the tnmioinu dimnscion of' point. SpeCilCalkJ conIsider CJI ltmIne . 23) at the: p1011t
the prediction errors, lead,, to at tree-I ike Structure for the 16'
scatterine, diagranm. and because of' this. i, e finud that -

OrOUPs, Ot values o' Y aire caIClclated together Iin this struc- 2
te.In particular. fromi Theorem 3.2 we can deduce that .~k 1 I21

if tkc consider a modelineL filter of odd length N. then this - .I

niodeline filter can he viewied as at iap f'roit the',
diesinlinu eco . oth dime~nsional Note first that thle hIi rt OWri1''ut of 1 2 3 1iand 3 29,.

set of' outputs" I Y" w V !5 N (w :a01 For V eve\ te nml. ., adF arc InI fact distinctC, And thUs
modeling filter miaps the two 2'\ '-dimensional input it is, necessar, to Inmplemnent hie conipula:! i 'n 13. _2) I, Ftor
vectors E, Ef, .,2 to the 2' "-dimensional set of, out.- example. thle second -- block (also ,hadedi in 1-ie 3
puts IY,. lf i, <- N. it, ( 0 . The case tif X = 6 is illus- computes as one of, Its outputs%, Net nlote that thle
trated in Fig,. 3. In this case the input vectors E, I, and other outputs,. F, and (-t 13 of .23 an ld 13 .9j are
Ej,- , produce the outputs Y,,, for iit) :C, 0,lv<:ý 6 (ats not identical. How evecr, these sina mu11 t pas 111.1 r;I, iug h1'J
\,,ell as the backward errors T" ,, and F,_~ hich arc not a '~operation beore enterine, thecorpidin
actually needed for the recursion). Trhe E vectors of \,ar- I block, and we ha' e alreadi, seen in our anal ti t thec
ious orders propagate f'rom left to right, while the F's odd case that I,"-, .. and F,, , are identlical uip to a
prop-agate tront right to left. The small black squares, rep- permutation. Thus onl\ one of* these 1. ne~edeu tLiw a block
resent o~(perations and the blocks labeled "1.-' -2.' at level n -- I . Trhis is inldicated Iin the ticure b\ a col-
etc.. perf'orm the computations described in Theorem 3.2. ncctinte. dotted bar betwe, en the 2block immediatei\ ito
The details of' the operation of' this systemn. hoxt, ei, er. re- (the left of' pairs oft even. numbered blocks. witlh onl\ oneC
quires f'urther explanation, of these identical signals cont inuing back%ý ard ito thle ci ir-

Let us first took at the situation f'or nt odd, in u hich case re~sponding ~ii I Hlock. For cesample. the 1\\ o) left- goirn2
each block, labeled "it' performls the calculations 2ivecn output signals, of' the Shaded -'-blocks. V 11 aiid I-
by (3.25) (or (3.27) for nm = I ). For example. the inputs are merged in this watalter the -, operation onl each.
to the top -3-' block in the figure (uwhich hats been Shaded) Exantinin2 next the ri-cht-hand sides, ofit 3.21 and
are E,. and F2. .2k'while the outputs are E. E.. ,.. and 13.29) we see that the first two .inputs arc identical eseept
F, i. Note that this block is connected to the right to ts O s- r a flip in the order. [his Is captured Iin the ftu~rc. ois
terns generating both Y, and Y,ý_ bui apparently we do not ca n be seeni fo r i =- 2. \i, heo:re t he t \wo i11p uts e ntecrin t ro Iin
need a corresponding 3-block at M6 in addition to the thle left of the Second -- block are the same as, those tor
one at t. To understand this, consider writing (3.25) at the first 2-block, except Iin revecrse position. It I,, ailso

t: 21 rather than at t: not difficeult to Cheek that the alst InputsV 1. ..... and
-ý ,Iare Identical uIP to a pe rmutation i'I ci inpo-

I nents. Wh~ile these sic nals do0 enter indiii ;dual bl c k s 0k C
have again Indicated that( tile\ are the ,,lie b\ a connect-

S(A, 3. 291 inc dotted bar between the -~blocks, linnediatel\ to the
richt of' pairs of* even numberedI blocks.I For thle e.ase oht I"
m- 2. the two left-uoing input signals oit thle shaided .
blocks. F,. I and 1K. areC ident ical and are connected

where we bave used the f'act that f'or any k, 6 ' is its ow n by Such a dotted barl.
inverse. Note that the first tw-o components of' the Output Fig~s. 4 and 5 describe in more explicit terms, the datai
in 03.28) are simpl-\ a permutation of' the first two Iin (low and Ilnemori, structure (or thle sys tem of order 6. Spe
(3.2S). The last outputs in these equaltions and both Inputs eitieallv Suppose thalt weN hasl\ f inished tile computaltions"
apparent tN diffr. Howe 'ci. it is eatsily ehecked that the required at the horoevcle indicated ssI \\ilh squm-es Iin i
output, F, ,ad F,.- ., , are Identical uip to at permuLta- 4. As indicated Iin the tree at the to p oif this ficure (I ia
tion if' the ordering of' components. as are the input pair shaded b-mir connectiing the squares I. sets of, I nodes at this,
E, ,, and L, d , and tilie input pair I-,. , and level are coupled together I more _,cncra ll\ Ir an tith-or-

F,,(this latter t'act is proved in the - u mil ihi- der mlodel 2 Points are coupled together) The ,tilte
cal (cnmiti ot' Appendix A and expressed via thle 'urn- f'or ibis set oft tour nodes is irldicAte'd abox c the nodes. i.,e
bilicajl cords, -dolied connec~tions-- of' Fiý'. 3). Thus there ha e stored tlie scalar s alties of J'. F,. and V. at each node.
is, aetuall% no need to have a 3-block at M~ as there wkas wec hate stored the 2 -veet, rs Fz and 1'j tor cacti ot' two.
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•F.j F. 'F. F.,2 V j.,

Et, Et

I .6 3t.

6 6

2=1 Yt.)

2C 1

6 5 i2

Fig. 3. Illustrati n the scattering, lattice stm tic tre of the rnode L,,et lie r ot ih cx •2Z tot .x ,xenl ord.' i s. c 1-. i ,,,',,
labeled "'n" performs the co , pUltiort1f in 0..21) (for \etit). 3 25x ir n odd. > I . r (3 2

7 
1x or i• I thI ii' nl.

squares denote I ' operations, and the dotted connections he"ts.ccix su'h sijkli luare,, tIlhie umihli;il o.kl i iicdillc.' i lrl" it t01'
outputls of these squares), that are idenical tip to a pernt tation of ,otmpoi•n nts X' A, ilndaiedC 2ýt 1 '1ie top 10 iliO the !iitrt.c, [h':e , 1A_

lov.ting through this s% stem are the • and F error process of siiceis " order,. .. oth the f lo, , to it hit .11rd h1 I,

right to left.

FS pairs of these nodes, and we have stored a single 4.-vector
'F, F, F5 for the set of 4 nodes. Given these quantities and the

F3 F, two 4-vector E, inputs for each of the two sets of 4 de-
'F, F F, F, scendent nodes (indicated with circles, with a connecting

, - .Y bar for each set). the model performs two parallel comn-
putations (which are identical in structure) to produce the
required variables to he stored at each of the two sets of

E6 F. descendant nodes. Fig. 5 illustrates 'In More detall h~ow
6 these computations are distributed and performed. Here

at each level the variables required as inputs are indicated
with "7." while those produced as outputs are indicated
with F'! Furthermore those inputs corresponding to the

Y Y v Y V ,Y stored state are indicated abo.e each layer of tile corn-

F, F, F, F, F, F, F, P1  putation. while below each figure we indicate the inputs
F2, F2  F2  F2  F, F2 F, F
Lt__ L• _ , I I I •. !J received externally ('?E, )or from previous layers (all other

F, F, F, F, ?Es). We also indicate behltw each la\cr tile outputs pro-IF , I,+ F . F 4 1 .duced. some of which (the 1 J:\, at layers 2 6 and the 'Y's
Fl at level I ) form components of the state at the next horo-

Fig. 4 Illustrating the propagation it state information lot the tilter in cycle while others of which (the F.s) are used as inputs
Fig 1, The stored iniriatioin indicated athosc lth top portion of tihe 11g by succeeding layers. For example, at the top lvcel !- ts
ure? ifr x, set of tour nodes at the horo.'cle indicated h% ,,quarcs is used, stored and two F, vectors are received ais the onlk external
o gcthcr Atah the input 1-,, sec,,ti ors. to k.oniptite the t\&O . :oirreýpofitlinig citshoa

ofl intormattin at the tvo desmen ent troups tt lir p at the ticst holon inputs, This layer. as shown .it Fig, 3. las o actuil sets

ev:e Ic Ot Outputs. One of these, tile -?, \ ectors. is not needed for
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) Ell ( !E2 ) (Es ( !E 3 I2 ) .
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T I ?Fl ?YFl

?E?E ?E1  1Er ?E2
F1  !F F1 T F1  !FT F IF, F1
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Fig. 5, llJusrrating Ihc di.iailcd counpuat,iuurial t~lnv tt'r tthc pri~paigation of state inlo'rlralion l(,r thc lihicr dc.,crihcd in tFie',

atld 4.,

the subsequent computation and indeed is typically not its index ry ' in the center ot the bar. Sim~ilarly. the indes
computed in lattice implementations. The other outputs tof the single E5 and F5 vectors is indicated in the ecrnter
produced are the E5 vectors which will riot be stored as of the lower solid bar. while the indices. and i6'2 fo~r
part of the state at the next horocycle hut which do show the two E4 vectors are indicated ahove the appropriate
up as inputs to the layer 5 blocks, portion of the solid bar. Note that the apparent redundan-

We have also included node indices in part of Fig. 5 to cies. indicated 1y the shaded bars in Fig. 4. are not prcs-
make it easier to connect the computational structure ot ent in Fig. 5. as in this figure we have shown just those
the figure with the computations described in (3.23)- variables required tO be stored and computed fronm horo-
(3.27). For example, the lower left-hand portion of layer cycle to horocyclc.
I (distinguished by shaded circles and Ires,) corre- As we will see. understanding the structure of the filter
spends to the pair cncmlputations corresponding to (3.271 described in Figs.. 3-5 greatly facilitates our analbsis of
evaluated at tand at t6. Also, at higher layers. wec en- stability.
counter vector error processes,, and a.s we have seen, these
vecto)rs are not distinct or. in fact, needed at all nodes.
For example, consider the po•rtion of the layer 5 compu- B. Lcviflsnn Reu'ur.son.s .fto the Nm'tIlizcd Rc.•idwL•l.
tartuIns indica:ted by shaded squares. *rhis describes the The prediction errors E, ,, and 1->., doe not quite deline
computation ofi (3.25) for n =:5. which requires a single isotrolpic processes. In particular, the components of these
EL input at node t. a single stored F., vector at tPy and vectors representing prediction error vectors, at a set of
produces one F', vector at node t and two F.• vectors at I nodes are correlated. Fu~rthermore, for n even we have
and ib 2' In this case, as we have pointed Outl a single 1-K, seen that F,, and f,,,,, .. ,, are correlated Kcc (3 I51.
vector need~s to be stored for the pair of square nodes con- These observations provide the mnlotivation for the nor-
nected by the solid bar in the figure. We have indicated malizcd recursions developed in this section. In this de-
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velopment we use the superscript * to denote normalized with the fact that fOr it e'en d:n f. - 2 dim n .t s, hifc
versions of random vectors. Specifically. X* -_ X for it odd din F.,: dint f:
where S, is the covariance of X and S! 2 is its symmetric, ProoF Let us first doer 3.3(0• 3 3• i a,,utn the

positive definite square root. invertibrlit t of _,," for each a. Th I. rc-uh t I,. rt lartwcI\
We now can state and prove the following, straihttorw, ard coMputation . en I I I I "I I r19 1
Theorem 3.3: For n odd the covarialttce matri.x S, (t,- e\el we b heeun t ith 13 . 7 ) and (3, 21 i and pwcuiltpfk C, h

fined in (3. 13) is invertible ifaml only if - I < k,, < . b
For it even. E, ,as defined in (3.15), is invertible if and
onh" if -1 /2 < k, < I Under these coniditions the whit-
ening recursions oj Theorem 3. / caln b' normalized, Since I . Is aln ci,_cnvecotor (t i .t ard iLcbr
vie/ding the fidhlwing reeursion.s for the nornmalized re- ' :, rti*wit• h il { lhi rr.r1dr, altic 'l c; lds 3I• •i
siduals: and 3.311 " here the lIalrr\ 1 0 , 4 IN impl\ Olthe lilncr\c

For it even: of the square root of the co• ariance of the tlerll In hrackt.-,

Ei I ,*,in ( 3.30) aInd in (3.311 - tie cquafrt\ of these c~,r~nc
S(k, ( i fOllows frotm (3115w . L-uafiorr 03.32) then folf vo n r tr,

-, ,k, E . .3. I I) and (3. 15. The case of it odd Inll\ o es an aiiaid
gous set of steps. and the ii it ctse I, Inlircdira.Ic

(U*)F*- (3.30) The preceding anal, sij pro, ides us hoith s rih thc c,:m-

- F, �., ditions for the mx crtibilitt of \" and , itlh i recurixf c pro-
cedure fOr calculating ý,; I see I . ,rppendix I) tol an

/ ~ /U\ alternate efficient procedlure . F-or it even \t, c hmr\ e
Ff* U*,, _' I, .* -- 0 " k dl,- (% I ;'

while for it odd. it > 1
(3.31)

where 0 - (k,,) is the inatrix square root sartisfyinig

2I-kIU kk2, and for i =t

k,,,,= I 1 (3.32)I - UI A.1 t3.4(0i
Note first that from (3.40) "c see tiat ki nLIut he IC'e

For it o~dd. it > I than I for to exist. For it > I a.id odd. note that
the onlk nonunit\ cigenlvaltie of! - k U, is I AI atii

E,,.-(Ini thus 04 tk, exists for it odd if aid tink if k, < I . Als~iE: k,,U.F in this case we can readil\ compute 0 (A. i using the ftl-
lowing formula. For an k >-

( 3 . 13 )

(I kk)F U: '' "kU (--zt -1 ± I. )~ (. -; . 0,4I11F:* 0 O(k ) F* k,, E,,t . ' \,, I -

,.,, ,.,,E,_... For n even. we Make use of the result thal for S arid 1
(3.34) symmetric

(k,e I= - k( U. 3.35) 0 S (X Y V 3 342)

For n = I: where

E * - ( r * - k Y , ) (3 .3 6 ) y IS T )
iY --IS "-- ) ( 3.43)

Using (3.42). t3.43) we see front (3i32) that to calculate
F, (Y k, Y. (337) 0(k,,) for it even we must calculate

Remark: Note that for a even we normalize E,, and ( (4, --- 2k U. I

EA,,, .,, together as one vector, while for i odd. E, , is
normalized individually. This is consistent with the na-
ture of their statistics as described in (3. 15)--(3. !9) and (I - k,,U:,1!

Again. lo he precise, wc should wrie (FIo,,.Fr which exist if and onl if 2 2 < k, <-I . completing
siryipiicil we t,,c the less, -imhersonie notation otur proof.



It' k., I ,-- 2 k or I for n even or A. I tor it odd, Fe'r 11 odd. it :t I

the resulting error proc.:sses are not full rank. Fuhs is the

Slimplest eV1arnple Of a Msingul-1ar process.. tbr which pertect
prediction of a linear combination of Y's onl a gim en horo 1

,

I on -past-' horoe~cles. Ii, Section IV we w\ill character-

x ectors. wve canl also describe the norniali/edt version of j. ~ i A.
the modeling filters ýN hich proý ide the basis for Lleneratingt
isotropic 1,'S Spec1itid by a finitle number oft reflect ton 21fc.

coefficients and dri\ en by white noise, k,)!(( i
Aiorem 3. 4: A1 ni rmuinaid modclmg, Ill ri/~ /h Po For 11 1:

trolpic process Y, vi~ists it fad on/v i/ - I < A., < I jolr 11
,)(141 and -- 1 2 < k, < I fo~r ni e'v"l. /it this caw fluIi. ( \/1

Ff* I

F,, (* atAk k',)K k,

-ko I IIkU k

2k 4-k41
a(A) 2-- --- k- - 1 (3.46) Proof/: We bckgin h\ -,01\n 11L 3.3))0 tor

Ef I ) then hK -uhstitu~tjlng ihi.. into (3..3,
v +2k -- I k eC obtalin

/N/a = 2... v V - k 13.4 7)

I+2k (1 4- k) "

where

(Ilk) -- (-A) k. (39 Fo obtain the desired relation. wxe sim~pl\ drop thec cat -

culationl of , , from (3.57)- To do this explic.itl\
flu' maItrix 1: (k,, i~s icfictrrd to ii.s 1(Ic A(Wr(Ifing if itf4 h %nrj 4C e OnSIdCr L iA,,) aS a niat ri \ xi~i ith ti loCk' M ch ltf11hl.
and it .valistil-v and four block rowks (one each tOr V% I', and t, .. I

and two for F<,% ). 'riint. what \\,c ,x ish to kiti to drop the
E7 (k,,) 1 (k,,) 1. l(3.50) second block row% A careful calculation usin, (lhe rcl,.i-

tions derived prevtouslk % ields (3,45) .3.49?. That !. (4.
Again wk: ýhmocn the notairuIn and) kkiat: L. It,, I iihcr fthin L 2 . W satisfies, 0.50) followks ininiediatelk from the fact that Owe
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vectors on both sides of (3.44) have ldent it co ia riances. identiceal comnpollent sets, and it is onll t hese deI
'Pie result for It odd. it > is obtained in a s nijlar l'ash- signals that plat, a role III the modelinte itter, '1h1,1 !0r oMr
ikon, and the case of, it =I is mie at purposes her se neried choostc oil[\ one \cs)jfio fro iftich

set0 16. :s: /I j' ir tin thisý case ssc atrt dhosin

IV- Ri i 1 i( iitN Cot i wi-t5 \is\Ni)t'i ll PkRwi I it , n () -lc2 dimtenstonAl %ectiir front a set it 2
PRO .( sst- s \ it NI( im. Is% vc,:toiirs. aý_airn produtc im til te correct nIIIIher- ofil efes :

The inal\ sis lin 111 and in the preccedinu, sections pro- 1'eCInaII .asx hacnoeinStioIlB.t tc c

\ides' us xs ith a frames' ork in wvhich ss eý can sa\ a grcatt trma ietepeicinerrpiicse ~i h
deal about stochastic processes and d\nramic steslcl, 00l hac kkkard prediction errors., this -simpl\ mteatis hat s\ c vxx
trees. In the first SUbSeetion we prov'ide at complete char- IrserteF rahrhnte . Smatrtvxri :d
acteri 'at ton ot' isotropic auto1regressi' e processes, and in

Subsctin IV-Bwe harate ilepurk nndet rni nst s\e .consider the 1-.> Hi is'e'er f'or it es en ourti niKaII 11/a

processes. In Section IV-C wNe relate the stahilit\ (filt linivle tecmie ora /eo o :. i
f. C referrineu to Fl, 3. the -u npl i

lattice models onl trees to the reflection crieflicients. w bik tLt5Ien
A.,,. ~,are normalized toictlhei . hus Hr it ecoc. iitcsted

it, Section I V - [)sse show. that all latrace filters. w\Ith ap- C

iropriate I - cons? raI tied reflect ion coe He ient s \ ield AR oft choosing one \ ector froit 1, 1-_ %). :c'-
I F" , . itC 0. . ti !ý i - I sske Choose )inc eCAtot

processes. shoxkirig the one-to-one coIrrespot)nden Tce be- oftiehedenon rm
tween these titters and processes, In each case there are (ftietedmnin 'o

similarities to the ,inalssis for stationarN time series. /F .

Howes er. the miore com'plex structure of' tile dx adic tree I i ;: 0. 1' t !5i
leads, to sm,)le im~portanlt and S~subsanilVe diffecrences . -%.

Propo.sitior 4. 1. 1f Y!. is (Ull tRf pi oirfo mni 'Jl rou c % N

AI. (111"(4ra ri Unatiofti ioc'cvi - rut. e Ithel Ililt I-c /ct tolt coefft~ctitl.% k., ai 40 /,1- 11 p

A wxell -known and essentiall. ri val result for time se- FifICI'11ltii1t-C, 111C fbr Ilr / a ilto All 01W M); 111iz1i:( (/ i~,'

rie, is that if Y, is a jpth order au~toregressive process. then (lict~~iot erot' vetm'C .%) t~ofoht 1-1 (flu trcxi r form .xia110tlr~

the rcflect ion coc flicients k,, are 0) for t :Ž p) -~ I Fur- 0/tilit 11(iiAL proitce.se.s (I. c. . with uniyl/I covO rjam. ) WoO

therotore . he /7th-order fomrwad and bhiekward predict ion P~rec'uivdy1. let l,, be lilt arhurlar% 1"1 ,ieb Mc rth t WOc an 01!

errors. %k h ich are also Ident ical to the nth order pr'edict ion Ai/cr all ufirtitme wxcqu car of predtcce.\\or\ andI Nui sxiir

errors fr itŽl . Iformi whlite noise sequences. The
following, result. which states the couinterpart of' this re- 7' k u! 0 0,

suit foi, Isotropic processes onl trees. iequires some pref- '

atorv comment.t Specifically, thanks to the vector nature Illen ant U Ž p. Me set * a/ adITiin mi
of our miodels". i.e.. the t~act that at group of' Y's on a given Iector's
horocycle are generated tog-ether fromt a group (ifthe Fs.
the prediction error processes wkhose whitcne~s we con- I 1. >
sider consist of' sampled versions of' the (normalized) E 2
arid F processes, wsith one -sample"' taken per ''group.'' fa1Ints a stalidardI o fn- ntc lli~ rot'e,.k mars. siitlI for 11
In particular. f'romn our discussion at the end of' Section p) am/ od.the, /ltr.c
Ill-A and tIV in the definition (2.8), (2.9) of F,-,.we find (
that the components of' E,, and I.,, are permutations of' >
one another if' It () and iij !s it - I . Thus we need .5
only consider one of" these vectors f'or each group on each f~iwis a stamrohini Ihm iijpres. tills i/u'h fi? It > p
horoicycle. Noite that this nmeans that wex are choosing only hi (iu'i evn ite, vet
one out of 2 error vectors. but each vector is ex-

aictl', of' dime-ision 2 so~ that we do have the cor-
reel number of' total degrees of freedonm. one per node on il
the tree.

Turning to the backward residuals. we find f'ront the fiirnis a siandarti whumc norie pr''ce,,v
discussion in Section Ill-A and the defi nit ion (2-6). 12.7) The construct ion of- I'and thle choices, of, point form iii
of' F, ,that the components of' F, ,and F1,, ,, fo(r iv :C7 0the sets of' predict ion err ors iii propositiont 4. 1 represents
and lwl ý5 a -- I are permutations of-one anot her. Ont the one particular xkak of'choosin~g one pied ictiton error vector
other hand, as pointed out O'Oir ito- " in Sect ion f'rom each of' the sets decscribed 11ctr( f lie stmieinent of the
ill-A, if' i is even, so that it is possible to fitnd it 74) proposition.
with nI %0 n. Fr ,, and h, , dto not have identical ! ets of' Pino)fif' Prtoito 4. /W fonselic It \o th
comnponents. Furthermore. it is easi ly checked that these F's as anl analMogous proof' holds, for the F's. Note, first
vectors are not uneorrelated . How ever, as is al so pointed thatl, thanks to tie normial i ation. all oft the [, %anmrables
out in Section Itl-A. the signmals FI. ,,ad " t.,o have do have unity, covariance. Also, thanks to thle samplingr



done in torminge the E* seits. it i*, straightfomxard it) check
that die %hiteness wkill be pros en it s.%e tan sho'.% thai for
1 ?: p (and either es en or odd)I the unnormaiiu ie predic-
tion error I-' ., is unco rrelated %kith F, (denoedi -L

E, for %I < 0I and tor w 1) . : %v it

Shos'.ino that this is true for it <0 is essentalk filte
samle as the proof' in the time Neries -ase Speciticall. .It'

k,; 0 ( for nt L- 1, then.

F. >,, it' 2 mn >

111) Chat 'i l, 11 t Cl t I ,l It.C f 1 61 Uh xIa~~ , tj 1.p', f SR, \

F'~~hac hici an l t4' inI .l~tC i iJý'f itup~ u1111 -1 Ak5

bv definition of the forward predict ion eorrors. Hence from ~'oId 'I'tcd .111 d,I w d(hn'I

(2ý.9) w e see that for nt 1 ),

I n, for it < 0. (4-3) trates the cs linders tor lowk order -\R iroicessev \ote that

Hence it remains ito prove that proposition 4.2 is a generaluiatton ot tile resuLlt tin i ap-
pendix Al \%~hich states thai it an isotropic: proiess' ha' its,

F,, I , for / . ~44) support concenitraited on jI. - o then it i. eesai'
E, E, forj> 2 4.4) AR (I

This proof'. which invokses the construction of' isomietrics
much as in several of' the proof's in I 11. is sketched in B. ('haracterir-jitim o/ Reya/ar (o)r Pio- A
Appendix C. A~Nomlterminihstid Poevw

For a time series model the constraint of' causality se- D~efinition 4. 1: 1,e shall sas that an < oi v Nl'1e4po
-erclv restricts the support of its impulse response. For Y. iAv regular or ,mure/x)? ,ihtnii.t i
exartiple any AR time series model has am AR impulse
response whose support is the nonnegative i ntegets, For o> 0 (4,
processes on trees, however, there is considlerable flex- liold~s, where
ibility in the possible choice oft support for a causal ini-
pulse response. However, as the follow&ing, states, the
constraints of isotropY allow uis to determine precisely. the o int' !I
support for AR models.

Propositioni 4,2: Let Y1', b~e ani AR ( p) isotropic process-
Let us write the jormal power serie~s P,. definel tin (2.24)-.F( i v,

__P., ~.(4.5) till! the infirnum rangvc.% over all (ollcction% (II S a/ar\
0 ),, here endv (mfite/v many of he p, are nooze.-rO

If' = 0. J), 0 i/w 0. It'/ .1, () tfile'.'' It (ilt the condition 1:k(:, z-I is\ S.%tiSPfi d.
'Joronr k , fp 2 2.thenI), Ojr tll vori.N In other words, no non/ero linear combination oft the

ofteJiY vwt values of Y, oin any given horoes dc can he predicted es-
actly with the aid oft knowledge of' Y in the strict past.

P '14 .and the associated pre-diction error is unitormlxiv,,, e 3) and lw., > 1 . (4.6)
bounded front below. We shall now characteri,'e reciular

suppot ~ clitttprocesses in a f'airlk simple 'sA'.% using reflection cocfli-Ini other words. Pil ha,% it~s vipr na hyi r of radius cients. t
I p1/21 around the path Jy' t toitard -- oo. F'romth i/uis Theoremn 4.!1: i) Vic' fidlowing, fOrmulas hold /Ori Tr eer
also have that the modeling jikie;- (if an AR ( p) processx
has its support int t.'.- vite es-lind'er tit radiue.% [72 Isotropic' proceI,:

aroundl It. ---o t-y' k f> 01j. Cover'sely. am.v pro- Y" lim inf , t

cess *Such that the inodeling 'filter hlaý its supp~ort c.oil-
tauted tin the c-I-i~ of radiic.' 1 p/21 is vec'essaii'. all
AR (p) process. x~1f(!:"I~ r,,( I -- k Ii k2,

Comment: The proof of' this result is straightf'orward. I

although tedious, and is left to the reader. Fig. 6 illus- -miin 11 4,K, 2k' (4I- > .I0))
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where X,,, (A) denotes the smallest eigavni tue ofthe ma- (4.9)_ Then. take hor M, : unI Will c ,A u - aL -
trix A. ant 12', is defined in (3. 13). sociated "l ifts sIt, mallest cl'gCilalhc \N, thel ,ohtv',i !i

ii) An isotropic process Y, is regular ift"n, on/v il irs lo\,%ing inequahld is %k hich sirnce f I,, arhitrars . ield', I hc
reflection coefficient sequence is such that k . K ! i49

1-• < k,,, < +1, and fitrthlerrlore, hm n? \,k,,_.Y.v I

S(k•, + tk,,,) < c-14 1 i

Comment: The corresponding characterization of reg-
ular processes in the case of time series is (cf.. for in-
stance , 12 1): ,,.

jk,,I < I Vn. -2,, < . (4.1<)0

Proof: Note first that the singularity of the process where (p, I is the faml% its,,c'aied A iih 11,

if k.,, 1 = 1 or ifk,, = -/2 or I follows directly from It remain, to provc 4 1 1i. L'sii,, 3 1 3 40i . -_cw.

the resulting degeneracy of the prediction error covari- w rite
ance (Theorem 3.3). Condition (4.11) of point ii is an 0 .
immediate consequence of point i. since for k small trrn ,, . . .. ..
(I - k. I + k - 2k2) - I - k- Thus we shall onlv 0 :

prove i. First. let us prove (4.9) by showing that J- Is But the three matrices, on the right-hand sidc ot thi, tor-
both a and !5 the right-hand side of (4.9). With every mulaallhavethe Haar'stema,,eiecnvectors (Ct II eq
(ju, ), 0 0 as in definition 4.1 we associate a sequence of 4.)1 ahene te can ditnlii all at (th rc

vectors (M,) of increasing dimension. Specifically. we .multaneously:

begin by forming an infinite-dimensional vector by order-
ing the A,, according to the ordering on the w c 0 defined
in [1. sec. 111-Al. For each n we then take the vector Ml,, (, .AtO•. ý \A()

to be the truncated version of this infinite vector by keep- 0 :. '
ing only the initial segment consisting of those p,, s such
that w is involved in the definition of E,. 2,. We then set , 0 .N) A) 2
A,, = M,,/1IM,,I if R,, t 0. and equal to some arbitrary holds where AA) denotes the diag,,nal n•,Irix of the ci-
unit vector otherwise (here. "1 denotes the usual genvalues of A. Using the definition' o (k, in (3 321.Euclidian norm ). ge.3a ,u e can u centh a t

We obviously have (3.35). we can deduce that

M,, = M,. for n large enough. (4.13) ,(-., t = diag (I - . ,.

Hence, thanks to the limit theorem for square integrable diag {I + ,- 2k I-. I 1 •
martingales 181. 191. we can write, for the considered . ( \
family (g,) "\(° ' )0 AV- ,",

Y,,, - E #,,Y,,I'L so that. by expanding the product and using (3.36). %e
'U" Y", finally get (4.10). This finishes the proof lf the iheorem.

Note that the condition (4. I1) is much more easil\ -.i-
/ olated by a valid reflection coetticient sequence than the

,Im i ,,o,,, ^ L Y , ,Y E 2, corresponding expression (4.12) for time series. pointing

to the fact that there is apparentl\ a far richer class of
lir M,,,.,2. •M,,singular processes on trees than on the real line. This is

"apparently related to the characterilation of spectral inca-
> lim inf X,,,f(E,,, , (4.14) sures for isotropic processes and to the large si/c of the

"I "• boundary of the dyadic tree (see the comments concerning
where the second equality uses (4.13). and the inequality 1I, eq. (2.33)).
is due to the fact that M,, is a unit vector. Since the last
expression in (4.14) does not involve the considered fain- C. A StabilitY Criterion
ily (A,, ). we immediately get the inequality _ in (4.9). A well-known result for all-pole lattice lilters is that
Now, fix ( > 0 and select n,, large enough so that such a filter is stable if and only if all of the reflection
,f(.... • -1) is smaller than the right-hand side of coefficients have magnitude less than 1. In this section we



state and prox e licoreni 4.2. whi1ch i-s the couintcipal irt ill 01 eac o tese diesk.Cndern st Nk ic Alk: t I&I.1 JIIIsi iI

this result for the lattice ltitters introduced in this Paper. wýe need tollow trlll one of1 these ptsInI older it,
Before statini! this result, let us clarifxi \hat we mecan bý amine stabilt 1-oltc\aiII~plC. 101 our sixth oLdr examl

'stabilitv. F igs. 3-5 depict fo'r a sixth-order examiple) PIC. we need otlI Cý,tahl ish sthlit of the 1A\ ildr taion

the structure of the unnornial i/ed filter. This filter de - input tA,(n l.totto (It Y l) in I, mln ).t
scribes how the computation oft Y, propagates f riom hi ro- How c% CrCIF. 1, i e ) ca take hi'I COI Insdcra hi lan he II par
c\ cle to horocy le, "with E. , (for n odd) or (E, ,, El,, ticular. because oft the px raialmal s inimietrie-. "c iieed

(for n even) as input and the Corresponding block oit Y's otiký consider thle stabilit\ oI thle maup InImi I I ,

on the same boroeycle as output. It is the stabil it,, of this f,, - mf10 to Y on as thle sIrictUro: of thle niuua to In I11

filter that w-e wish to study . )'(tin,. and I' tin) are Identical. More .eincrjll\ . sati

77eorem 4.2: Under the, con1dinon~s front all\ node t,, oin thle tree, wýe needj oinis onsidcr the

-I < A,, < I nI odd I -s n :5 N 4. 15) saii>o h aisi'oscii cirttir i
Oil, since the di, rianics.- hor an\ oither path froml h,,t'a

I C\ Cie < vnI 4 1 c ct hoiroes dc has identicail structlure.
tinete notaition oif Ftcj. 7. wec no)% ,ee thatl wek mujkjt

tiit, i\rh-order uniiorintj/iced modeling filter specified b7 e xamncn thle Ntabilli lit \0 thle -s\ stet ill a'irated tin Fi S
(3.23) - (3. 27) is .%iable, io that at bounded input E. , fOr tor the sixth -order case, where -thle ninall olid sqUares atm1

,V oddl) or (E, \,. 1*.,,- , (ii jto'A eveln) vic'/. (I bounded denote standard - -pcrations n.e.. ii m)t :. t im
output Y". similari 'v. tile nlOrmalahed iidlliiichnti/icr *%l)CCt- I ) ). Here the .'~iA. mat inces are c sac.tl\ o, dectined in
ified in Theorem 3. 4 is al~io stable unide,- these conditionis Theorem 3.2. We can now% appls ,tandard tim~e domtain
.so that a bounded input E,\ (ftor N odd) ort (E, methods, ito this sN steriil

E , ) (,for N even) Yielfds a bounded outiput Y!'i. Note first that tinder condit ions (4. 15 i . (4. 16). thet
Proof: Let us first show that by taking advantage, of 0(k, K5 matrices defined In Thet rent 3 3 anld thlecoar

the structure of the filter computations we can sitnplil\ ance mlatrices2,, are in' ertible so that we can cqui'.alentix
the required analysis and can, in fact. reduce it ito a qUes- Stujds the stabilit of the nornialtied forti of the niodelinue
tion of stability analvsis for a standard temporal systemi. filter. Note also that checkmng that a ss\\ieni function /l(it
To begin, in Figv. 7 we have depicted one of the two par- has all its poles strictls, inside thle unit circle is, equixalenl
allel computations depicted in Fig. 5, where we have used to cheekinLe the samne Conditiotn for the soteml IIunction
notation that emphasizes the sequential nature of the com- Ht: t Thus to test for stabilit\ wec can niodits the sx ste

putations. Here the indices "tin'' and "mu - I"' index oit Fic. 8 bi addine a unit deax in cxers, leht t-rie-ht-
horocycles so that the "'in - I - quantities are stored and going pathi. and bi. replacing the SA 1 blocks, b% the -cat-
the "in'' quantities are computed fromt the input (E,,, (tilt. tering matrices L2 IAý ) olt Theorem 3 .4. For examiple. in the
E,, (in)) which is distinguished by a solid box at level 6 sixth-order ease we can equixajlentl\ check the stabilits ol
in the figure (note that the reverse-going output from this the svstemi in FiL,. 9. Recall that for an .Vth-order filter wec
final level. F, (mn) is distinguished by a dashed box). The proved in Theorenm 3.4 that
subscripts for the signals in Fit,. 7 code the various error

and utpt poceses t ech evel. The first subscript for U 't . .I-''\ 4 ~
the E and F vectors indicate the order of the error vector. for any set of coefficients A,. '' , that are reflection
while the second subscript (and the only subscript for the coefficients of some Isotropic process. Buit the etitric' oft

Y 's) indexes the vectors alone a segment of a horocycle. the matrices 1: (k, )1 '_1 (k: -- /. i =~ I ..--...... are rational
The precise correspondence between the normialized'ver- functions of thle A,;' that have no poles inside the domaian
sion of quantities in Fig. 7 and those in Fig. 5ea b-, e specified by. the conditionx (4.15)., c4. 1(1!. Henice %e mla\
directly determined by matching up signals and node in- usthLem C.2oApndxCoetndherprx
dices in Fig. 5 with signals and horoex des index (on and 4. 17) to the whole domain specifiedi h\ the conditons,

in-I) in Fig. 7. For example. t4.15).(4.16).

Y.Y6, Y,ý-. ! 1%,;.:' V Y(in). )'f(llo. Y1011i), Y. pl Using, 4. 17) and thle notation of FiLg. 9) %e has c that

Y F, , Y r,.2 3 1 (F, I m ), [ 'I , (in) 1)on),-~ mn

Ej,4. F1,~ -. - (E41 oin), E42 on)). where wec has e the botitdar\ citnditlioiis

As we emphasized in Section (If-A. and as illustrated (i) uin

graphically in Figs. 3-5 and 7. each stage of' the comnpu- mtl,0 ý ciil - I). f4 20tt
tation is pyramidal in structure. For example. the state of To study stabilit\ wve set i nO (0 atnd dclinti the followý -
a set of nodes at a given horocycle, together with the in-
puts, provide the state at two descendent sets of nodes at w\kc %ku' iket I'l Id~%ck,t(lI!C Bt (tIi 'ik e'' fol ltin

the next horocycle. Since the comiputations in generating proof
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"E41(Mr) + 4 1(W ?E4(I) 'F 42<na
'E3 1(() ( 32M( )

?F 2 1(mi) 7F 22 (mi.)

?F~(u,) F (nM ?E32(W 'F 3 2 T,
CF I n(t)) (Ez.2(m ) (IE23( m) (!E2Anm))

?F1 i~ml )'?I1 z{I'l )

.Fz2 (17V ?E22.(m) EZ3(UO .•EN(ft

'F 2 1(M) !W22(vn) F2 3(M) F24(m)

VE•10m) CEIZ(1) IIE1(mo) CE14(W)

TF11 (m) WF12 (m) WF13 (m) 1F 1 (4M
IY dmn) !Y2 (mr !Y.A(mf !Y(U M)

Fig, 7. Illustrating one of the two parallel. sequential computations for the model of Fih, 3

(4'(:M), E621mD} F51ýM) 01ý1(-), E2(rn) E.m) LOM (F21(m). E22(m)} • El~) r I(M Yj(m

U-61(m) F (m} F4s1m) Fm1(m) F2 {m1 F1(m)

Fig. 8. Illustrating one computational path from horoc,.cle to horoc',clc. It is ]his standard thowi domalin ss s'tem w hohcis
iN equjalent to thai of the unnornilized miodeling tlter.

'• M) ns(-) rw M) Tlim) rlim) rll(m) T)M M

Fig. 9. Equlialent systenm whose stability is inv',cttgatcd in the prooft Wi rhcoren) 4-2

ing positive-definite function of the state of the system D. Every Finite Fanily of Reflection Coefficictt.s
A Defines an Isotropic AR Process

V(m) = > %,l,(m)WI- + 11,1, (m)I-. (4.21 Our analysis to this point has showkn how to construct

a sequence of reflection coefficients Ih, from an is(,-
Then from (4.18)-(4.21) we obtain tropic covariance sequence {r,, }. Funhenmore, \%e havc

S-)seen that the {k,, 's have p..rticular bounds and that if
Vimn) - VIrn - I) ,1,1t-(.,)¶. t r, conies from an AR ( p) process, only the first p of

It can be readily checked that the system is observable the reflection coefficients are nonzero. The following re-
from pr.,n), as long as (4.15) and (4.16) are satisfied, so ,alt states that the converse holds. i.e.. that anv linite k,,
that V(m) is a Lyapunov function proving asymptotic sta- se~quence satisfying the required constraints corresponds
bility. to a unique AR covariance sequence. Tnis result substan-



tiates our previous statemcnt that the retlection coctli-
cients provide a good parameterization (if AR processes.

Theorem 4.3: Givett a linit" xceqlnelmie ,(1'reflietiin hih ..

/owiedis k, I !s a :s. / uh tha"

-~< k, < I for n evenNI
(4.23) NIII

thee eist a < Ak, < I for n odd

ther e~isr a nique isolrol~ipc (0 'iarnee ste quene1e 10hi, Ii

hais us its reflection coefiieiett seq(ue'nce the giviien A,. /()I-
hIolle1 bY III/ Zeros.

Proof- Consider the modeling tilter of order p spec-
itied by the ,iven set of reflection coetticients. What "e
must show is that the output of this filter y, is well defined
(i.e.. has finite covariance) and isotropic when the input
is a standard white noise process. That it is well-defined t-,.. i0 A .. , Ipk. l , A , R 1 , .. ,. I . h,!o,

follows front the stability result in Theorem 4.2. Thus we
need only show that v, is isotropic. More specifically. let good paramnetrizatton for AR prwcesses and sotrop)ic pro-
(s, t) and s, I') be any two pairs of points such that cesses in general. In particular xwe hake de\eloped \•khit-

d(s. t) = d(s'. t ). The theorem will be proved if wNe can ening and modeling filters for AR pr•ce,-,,e that can be
show that the function completcl\ specified in ternms of these coetticienis. In ad-

4 : K - (k-_ , I - E(.v•\,) - E( v, Y, t (4.24) dition we have sho,,kn that there is a one-to-one corre-
spondence between finite reflection coeflictent sequence-

is identically zero for all k,,*s satisfying the condition and AR processes. ha\e characterized the stahili, ofl Lat-
(4.23). But the formulas for the modeling filter (Theorem tice filters in terms (if the reflection coeflicients and ha, e
3.2) show that 4, is a rational function of K which is an- shown how% the regularito, of an isotropic proccss cn he
alytic inside the domain specified by the conditions (4.23). characterized in terms oC its reflectin coetticient ,,-

Also 41 is identically zero for all sequences K arising from quence.
valid isotropic covariances via the Schur recursions This work represents one part of a larger etlort to de-
(2.26)-(2.31. Then the theorem is an immediate conse- velop a theoretical foundation for muhlicale statistical
quence of the Lemma C.2 of Appendix C. signal processing. In particular in I101 we inoestigate a

weaker notion of mulfiscale stationaritv which leads to a
V. CoN),CI'sn)N state space and system theor\ for multiscale modeling and

In I II and this paper we have described a new frame- a corresponding methodology for scale-recurs ive optimal
work for modeling and analvzing signals at multiple estimation which acconmodales very naturally the fuNion
scales. Motivated by the structure of the computations in- of data from sensors with different resolutions 131-151- The
volved in the theory of multiscale signal representations multiscale AR models dcvelo;ped here as wclI as the state-
and wavelet transforms, we have examined the class of space models of 131-151 are particularly useful for mod-
isotropic processes on a homogenous tree of order 2. cling and analyzing signals displa\ ing fractal-like or self-
Thanks to the geometry of this tree, an isotropic process similar characteristics. For example., when restricted to a
possesses many symmetries and constraints. These make given level of resolution, a sample of an isotropic proccs,,
the class of isotropic autorcgressive processes somewahat can be drawn like an ordinary signal- We shlxu in Fig. 10
difficult to describe if wc look only at the usual AR coef- a sample of an AR (3) process with A, =K k, -- A, K A 0,91.
ficient representation. However, as we have developed. Figs. I I and 12 show approximations of this signal at suc-
the generalization of lattice structures provides a much cessively coarser scales using the multire,,olution anal\ sis
better parametrization of AR processes in terms of a se- via wavelets of Mallat-Daubechies. a,, presented in 171.
quence of reflection coefficients. These approximations displa\ the self-similar statistical

In developing this theory we have seen that it is nec- characteristics we expect of this class of models see also
essary to consider forward and backward prediction errors the thorough development for so-called I f'procese, in
of dimension that grows geometrically with filter order. 11I1. 1121y
Neveitheless, thanks to isotropy. only one reflection coef- There are several promising directions for further re-
ficient is required for each stage of the whitening and search building on our fonnalism. In parilCular. an csen-
modeling filters for an isotropic process. Indeed as shown tial topic for investigation is the development of nmethods
in I 11. iso)tropy allowed us to develop a generalization of for constructing isotropic AR models direclfx fronm data
the Levinson and Schur scalar recursions for the local as available in practice. This requires idenlif.\ing multi-
averages or harycenters of the prediction errors, which scale structure and estimating isotropic co\,ariance se-
also yield the reflection coefficients. In this paper wc have quences fronm data restricted to a single scale. i.e. ta siV1-
justified our claim that the reflection coefficients are a gle horocyclc 161. In addition, we expect that these models
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0" ... . .. : ,I stead of 5  L',[in thesk notations. c ha e thc th i

01 I inL, result.

IfLemma A. .FOr eah ?z, ith pdb'n itig rpruth huh!

Prp eo I p et 1 1oof F U

Proof Recall that. for <0. 1% a

-- .. ... ... .whence
02:: : '• F . w = L ._ Ii( .. - B,. -

1.. aridS', ., I ; '" " •and

-- Y , = 1 1F •,, , - :: , O v)

-~~~ .1 -- F
4(51.. . .... ..... . . .. . . ... . . . .. . '.. ..

Fig. 11. The Mallat-DaubechieC mnUIfiresoiutwn appmxnmtlion ol ( h 'tg. so that, t,) prove the lemina, it i, enough to shoi the tol-
nal of Fie. t0. lowino formulas:

iv that< 1
0 -- ,-- - - - - -,k *-.. .- , ---I •. <

-0. - -0'hld i-%n -A.3. whc amut o ei\tht_Žj -.

k n 21 ad0, Ž' 2. 1 A .,22

""e , Proof of (A. Set Ai 6n', s 2./ -- 2k Thn

I I •i.t. cotne.-I hnw ' - =w o jf : )( . Then

n t00 2o0 100) it SO 5o) As t • •" '.\ 3

ic 7where .v= max C.v. 0). TO proc (A II It suffices, to cr-
! • .. .. ................. ........ . .. ..... it'y that

.0holds in (A.3). which amounts to \erify that ii 2 n -12

should be of value for segmentation of signals. and. in - 1) = 2 101 - 1)1/21 -- I - n -- 1 also) prove, (A-2).

two dimenstons, for the identification of textures. based
on differences in multiscale characteristics. The scale-re- AP'i.tNDii\ B
cursive structure of the AR whitening filter should facil- PROo-fM (4.4 )
itate the calculations of likelihood ratios m uch as in or- T ake an j >. 2 . S uppose th at kk " c + 2 ,, an
dinary time series analysis. Work in these areas, as well - n . os th iisor) =i2 [, -1 / 3 so that
as on several applications of our theory, is proceeding and
will be reported in the future. Iniconfeusbe

2) '1' maps the set ý y ;- 1 Vtn < 0, 1 it" -. - -n onto

AIPfEND~IX A itself'.
UMBILICAL LsMMA 3) o teapsRthe points filte U sur6l fail Pi < 0. .. 4

ir ai onto a set of pointi each of wkohich Is <a
We shall use the following notation: tkh

wY, = seaLet Yal Yao, and define Fto similarlon. Then, thanks to

where p is a word. Note that we have iso(tropy. Y= hs the same statistics as . hus from 42)

Furthermore, in the sequel. Iq2 denotes the greatest inte- However. thanks to properties I 0 and (2) of -I'

ger smaller than qe and we shall write. for short, 6 1"1 in- 1r, ,,
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Fig. 13. Illustrating the isornetr' used in Appendix A for the casc n 5 and J 3. Here the p I pt p,,MI 1 , 1- . that tile
part of the tree toward r from i- ' is left unchanged. The "rotation" exchange,, the poini, i- and r - A .nd mip,, tht,'
successors accordingly. The set of nodes indicated with , which is in this case both It', I Iýt. _% n I:a .rid
{t I ' iw!w < 0. lwi 5 n - I I is left invariant b, this isonittn. Also the point t6 - , rnappcd ,fito one ,,I the rrim edrale
successors oft-, 1 6, both of which are < p I

while thanks to property (3) and (2.9) and we let S denote the set of .such veclors. so that

E,6 ,,,, e KC{r I , w < 0). (B.2) < < +k

Equations (B.1) and (B.2) then imply (4.4). -< < k,,, < + I.
The required isometry is of the pivot type used in the

proofs in [1, appendix C1. As illustrated in Fig. 13. the Lemma C. 2: Consider a function 4.froi R;' into R -r-
pivot for this isometry is the point t-y- "it 2 and the di- isfving the following properties:
rection of "rotation" is as indicated in the figure. It is 1)) 4(K) = 0 if K is the reflection coe.ficieit sequecme
straightforward to check that this isometry has the re- of an isotropic process.
quired properties. 2) (P is anal-twic inside S.

Then, P - 0 in '.
Proof. Since 4) is analytic in ,. it is sufticient to

APPENDIX C show that (P is zero on a set with nonempt% interior in Is.
SOME USEFUL LEMMAS Since we know that 4(K) = 0 if K is in the image of the

The first lemma is an immediate consequence of the map +' introduced in Lemma C. I. it is sufticient for us to
Schur recursions (22.6)-(2.31): show that the image of' 4' has a nonempty interior.

Lemma C. 1: Consider the transformation *' which maps Thanks to the fornm of the Schur recursion formulae
an isotropic covariance sequence {r, } to the correspond- (2.26)-(2.31). we kno'k that '1 is also a rational function
ing reflection coefficient sequence. The Jacobian of this and. thanks to Lemma C. I. its Jacobian is triangular and
transformation satisfies the following: always invertible. Thus it is sutficient to show that the set

of finite sequences {r,,O < n <- N} that can be extended
ak= 0 for < m (C. 1) to a covariance function of an isotropic process has a non-

=r,, empty interior. However, this property is characterized b\

a finite family of conditions of the form
ak.,, I 0 (C.2)
ar2, 2" P,, (0) 0(i(r,. . r,,) >_ 0 (C.4)

ok,, t _ where 4I(r,. r,,) denotes a matrix' whose elementsOr,., -(P:,() +6'•[P,,(O) * 0 (C.3)a " C are chosen from the ro. . r,. The set of' (p -+ I I-
tuplcs satisfying these conditions wAith strict tncqualil\ is

where the P,, are the Schur series defined in (2.26). nonempty (for instance, r,, =- ,,, is the covariance se-
Next we write K p(,,) •, to denote a vector in R", quence of white noise) and as a consequence the set ott ,,.
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r~, Natist' inig (C.4) has a noriniptnp interior. Ibs IhIIsc0, \Ii i'; c. 5¾ 1,'.''i i½

finishes the proof oit the lemma., hil" sin c 14, ~. 1, i ., .*.
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